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I INTRODUCTION

In two previous studies, Ref. [1] and [2], particular
cap models for soils and rocks were introduced. The purpose
of this report is 'to indicate the manner in which previous
models may be generalized, if necessary, to more adequately
describe the behavior of geologiczl materials. The full
scope and theoretical basis of the cap model is described so
as to demonstrate and define the capabilities and limits of
the model. Also, the fitting procedure and use of a
particular version of the general model is illustrated by

reans of an exanple.

From a general point of view, a cap model falls within
the framework of the classical incremental theory of
plasticity and is based on a loading function which serves as
both a yield surface and plastic potential, Typically, the
loading function is assumed to be isotropic and to consist of
two parts: a modified Drucker-Prager, Ref. [3], yield

condition, denoted by

£.(J JZ) =0 (L

1( 1°

in which Jl and Jé are the first and second invariaats of the

stress and deviatoric stress tensors, respectively,together with

hardening plastic cap
1
fz(Jl y Iy 5 K) =0 (2)

which may expand or contract as the hardening parameter K

increases or decreases, These are illustrated in Fig., 1.

The model describes material behavior in compression (Jl-s 0)
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and, in general, some type of tension behavior must be
postulated for completeness. Tensile behavior (for which

J, > 0) will not be considered here.

-

In the previous models for soils, the hardening.

parameter was taken to be

P4
= P .
K= €y (3)
in which 85 is the plastic volumetric strain, while for
rocks
E 2
- | -z ' - P P 2 2py? :
K = 05, 3y [(el) + (g,) + (e5) |dt (4) :
0

P
in which the ei are the principal components of the plastic

T T

strain rate temscr and t is time. The use of Eq. (3)
permitted the cap to reverse itself when a point on the yield
curve fl = 0 was reached, thus contrelling the excessive

dilatancy predicted for soils by the Prager-Drucker model,

The use of Eq. (4) for rocks, which does not permit the cap
to move back, cnsures dilatancy while permitting
hysteresis in a hydrostatic load - unload cycle. Such

volumetric hysteresis 1iS not present iun the Prager-~Drucker

model.

In the earlier models, the elastic portion of the

-behavior (which is most important in determining the unloading

v A

and reloading behavior of the model) was generally assumwed

to be lincar, i.e., it was described by constant bulk and

»
vk i, e

shear moduli. s




It was found that good fits (well within the scatter of
the experimental data) of stress-strain curves and loading
paths were obtained using an exponential function for fl and
an ellipse (tangent to fl = 0 for rocks, and with a horizontal

tangent at its intersection with fl = 0 for soils) for f2 = 0.

While these particular forms of cap model are adequate
for many purposes, it is desirable to describe the model in
its most general form so as to clearly indicate the adapt-
ability and flexibility as well as the limits of the cap
model approach., This is done in Section II. In Section III,
the procedure for fitting the cap model is briefly described,
while Section IV gives an example of a particular form of cap

model which was used in ground shock calculations.
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II THE GENERALIZED CaP MODEL

The classical theory of plasticity allows for a broad
range of material behavior, and the cap model falls within
this range. Many previous applications of plasticity theory
for mvtals involved the assumption that volumetric strains
are purely elastic. The cap model however, is predicated
on the fact that the volumetric hysteresis exhibited by many
geologic materials can also be described by a plasticity
mode), if the model is based on a hardening yield surface
which includes conditioris of hydrostatic stress. Guidelines
as .o how this may be done have been provided by Drucker,
Ref. [4], whose stability postulate is sufficient, although
not mnecessary, to satisfy all thermodynamic and continuity
requirements for continuum models. Stability ensures that all

physically reasonable initial-boundary value problems are pro-

perly posed in the mathematical sense.

The basic implications of Ref. [4] with respect to the

Plastic portion of the material behavior are:

1) The yield surface should be convex in stress space
2) The loading function and plastic potential should
coincide (associated flow rule)

3) Plastic strain or work "softening" should not occur,

i.e.,

(5)

Me
o

\

o

in which Oij and ezj are the components of the stress

and plastic strain tensors,

These conditions allow considerable leeway in choosing the
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functional ferms fl and fz in Egqs. (1, 2), but the particular
functions given in Section IV seem capable of adequately

describing most geological materials.

It should be noted that work by Mroz, Ref. [5] and Bleich,
Ref. [6], suggest that it may be possible to violate the alove
conditions in ceiitain cases without destroying the stability

of the model.

The fitting of stress-strain curves and loading paths
using a cap model can be mproved by introducing a nonlinear
elastic component of behdvior. This has been done by replacing
the constant bulk and shear moduli in the linear elastic

stress increment-strain increment e~uations

dJl = 3K dI (6)

dsij = 26 deij (7)
by

K = K(Jl) (8)
and

G = G(Jz) (9)

In the above equations I is the first invariant of the strain
tensor and sij and eij are the stress and strain deviators,
respectively,

Additional flexibility in fitting experimental data can
be introduced into the model by generalizing Lqs. (8) and
(9) to

K = X (Jl,K) (10)

(11)

['y]
]

\j
G (JZ,K)




It should bte noted that Eqs. (1C) and (11), or Eqs. (8)

and (9), correspond to a hypoelastic model, Ref. {7}, with

a positive definite elastic internal energy, W, which is

independent of stress path. This may be shown by writing

(€. . g, .
ij ij ; ds,. dJ
(s; + 59 §. ) (—i + =L 5. )

(12)

O—
(=]

During elastic deformation K is constant, so that the integrals

in the last member of Eq.

L
values of J, and Jl as well as on kK . Therefore, W is

2

independent of path during purely elastic deformations.
]

Further, since G and K are always positive, as is J2 , W is

positive definite. Therefore, there is no possibility of

energy generation by the model.

In problems involving wave propagation at sites comnsis-

ting of layers of both soil and rock, it is desirable to be

able to use the same digital computer program for layers of
both kinds. This is not possible when the different harden-

ing parameters of Eqs. (3) and (4) are used. 1If, instead of

Eq. (4), the hardening parameter for rocks is taken to be f

(12) depend onlyv on the current -

RS SO IR B R ALY
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the maximum previous value of plastic compaction,

K = es(max)

a generalized program which may be used for both soils and
rocks can be easily written. It should be pointed ocut that
the useé of Eq. (13) instead of Eq. (4) does not permit the
introduction of dilatancy until the stress point first
reaches the yield surface fl = 0, but this loss in accuracy
of the fit may be less important than the improved efficiency

of using one generalized model for all geological materials.

It is also noteworthy that in those problems in which
no advantage is gained by using essentially the same compu-
tear code for rock as that for soil, and where the rock is
not too porous, a model incorporating a yield surface fl = 0,
no cap, and different bulk moduli for loading and unloading,
is sufficiently accurate and simpler to use than any cap

model. This possibility is discussed in more detail in

Appendix A.

It is also possible to include other features in cap
models, such as anistropy, rate dependence, and hardening
of the modified Drucker-Prager portion of the yield surface
(isotropic and/or kinematic hardening). Further, in some
cases it may be desirable to. replace hypoelastic behavior
with hyperelastic behavior, Ref. [7], within the yield surface.
Since these additional possibilities have not been sufficiently

studied, they will not be included in this paper, but will

(13) !

PR e o o e . e e




be repcvted upon later.

If it is necessary to introduce finite strains, Jaumann's
stress rate and the rate of deformation replace the stress

and strain rates of Eqs. (6) and (7), Ref. [7].
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F T A

IIT PROCEDURE FOR FITTING OF THE CAP MODEL

The procedure for obtaining the functional forms and
paraueters used in cap models constructed for use in ground
shock conputations is based on representative material data
obtained from laboratory tests on material samples.
Recently, in-situ nmaterial tests have come to be recognized
as having important potential in ascertaining material
behavior in situations of importance in ground shock
conputations. Work is currently in progress along several
fronts tec determine methods by which such tests can be
incorporated into the overall procedure for determining

material behavior.

The representative material behavior generally consists
of uniaxial strain and triaxial stress data. Sometimes,
hydrostatic, proportional loading, direct shzar and/or other
tests are available. The first step in the fitting procedure
is to employ the unloading portion of these cests to
determ'.ne appropriate elastic behavior of the model, since the
cap model behaves elastically during initial unloading in
these tests. For example, as long as the model behaves
elastically, unloading behavior indicates the bulk modulus K
in hydrostatic tests, the shear modulus G in triaxial stress
tests, and the combination K + 4/3 G in uniaxial stress tests.
Other tests, if available, may be used to check or adjust the

overall fit.

The next step in the fitting procedure is toc establish

the failure envelope, i.e., the portion of the yield surface

11




‘'which limits the shearing stresses that the material can
withstund. While the failure envelope could bz chosen as a
work or strain hardening yield surface, it is generally
adequate and much simpler to assume it to be ideally plastic,
The failure envelope is generally obtained using failure data
from triaxial stress and proportional loading tests. This
data is fit by a function of the stresses, and is usually
assumed to involve only the first stress invariant and the

second invariant of the stress deviators.

The remaining step in the fitting procedure is the most
difficult. The cap portion of the model is obtained by a
trial and error procedure in which a cap shape and hardening
rule are assumed and the behavior of this assumed model is
computed and compared to the representative material data.
If the fit requires improvement, a new set of parameters is
tried and the procedure is repeated. The computation of the
model behavior can be based on the equations describing the
relations between the stress and strain increments during
the common laboratory loading paths. These equations are

derived in Appendix B for the case of uniaxial strain.

Obviously, the success of such a trial and error
procedure and the rapidity with which it converges is
strongly dependent on the experience of the mcdeler,
Knowledge of the effect on the model behavior of changes in
the cap model parameters is important for rapidly obtaining a

satisfactory fit, For example, the fitting procedure is

12
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greatly simplified by the knowledge (obtained through
experience in fitting ceveral cap models by trial and error)
that the hardening rule strorngly atfects the stress-strain
curves for uniaxial strain and hydrostatic paths, while the
shape of the cap plays an important role in determining the
stress~strain behavior for triaxial stress situations and

the stress path for uniaxial strain. In fact, the hardening
rule has been obtained for the most recent cap models by using
a separate program to compute the plastic volumetric strain

during hydrostatic loading.
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Iv Al EXAMPLE OF A GENERALIZED CAP_MODEL

In this section an example of the type -of cap model used
in recent ground shock calculations is presented. 3pecific
model parameters and the resulting model behavior as -well as
the osizimal material properties to which the model was

fitted are also presented.

The failure eavelope and cap, Fig. 1, which describe

the entire yield surface of the material, intersectat Jl =1L
L
The complete yield function, F(J, ,-\/Jz , 63) = 0, is
Y T BJ1
= - - = if L
' Fl(Jl,\/Jz) J, - [a-Ce 7] =0 if L<J, (14)
F(J » J ,Sp) =
I 2%v I T P 2 2 LI 2
( Fo(3ys /;—,ev) = (J;-L)“4R°J,-(X-L)
(15)
=0 if L>J1

in which A, B and C are material .constants. The two quantities

P
v

L and X are functions of €] and represent respectively

the values of Jl at the center of the cap and at the intersection

of the cap with the Jl-axis. These two quantities are

related to each other through the parameter £ by

BL
£ -X=RI[A-Ce ]
) L if 4 <0 (16)
L =
0 if 2 > 0
and are related to the plastic volumetric strain 83 by means
of the hardening function
2
. (D,X-D, X) D_X
el = wle™ -1~ axe 17 jayxie f (17)

14




;.
s
- -
-
'
. 4,
o -
i =
.
Eo-
< -
A
-
-
.
v
I
14
H
5
>
9
B
i -
1 -
T -
-
3 2,
o
b 4 [
; :
E. &
8 -
-8
SO
o M

TR, Soew o G, T Yo C
A Z K w ’»4'5}“ R FTYy
I

///
-

//"/—DRUCKER-PRAGER LINE

i MISES LINE

e e v ey ey S G e B e S ——— Svan —Gm— e a—— o an o

)

1y

204y, J3.K))

fold),95,K0) . K2 > K

-J;

FIG.1 LSCADING FUNCTION FOR CAP MODEL

15

e i < oo —

e oo




AN

Tredg oy 7wt

Vrp;_;,» Sk

N
o Ao

in which W, D, «, DJ R D2 s WF and DF are material constants.

The quantity R in Eqs. (15, 16) represents the ratio of the

major to the minor axis of the cap and is given by

2
RO RZL —RA(L+R5)'
R(L) = 1+R1 {1 + Rle ] + R3e
in which RO’ Rl, RZ’ R3,R4 and RS are material constants.

The elastic portion of the model behavior is represented

by the bulk and shear moduli

K.,J
11 K
w(., ey = gk 1+ Se + S
vy EI X191 2 cosh(k,eP)
1 + Be cos 2°v
L 1
G/J -G J
'opy e 1l '2 + Ye 2 2 Gs
G( Jz,ev) = GEI s + =
-G,/ J 2 cosh (G €y)
1 + ne ZWV 2 3
in which KEI’ g, ¢, Kl, KZ’ Ks’ Y, GEI’ n, Gl’ Gz, G3 and

Gs are material constants.

For the material constants listed below the model behavior
is  shown in Figs. 2-4 together with the material representa-
tive properties to which the model was fitted. In general, the
model agrees quite well with the representative preperties.

The model parameters are

16
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A = 0.405 ksi R, = 0:03 ksi ™’
_1 .
B = 0.5 ksi R5 = 7.0 ksi
C = 0.403 ksi Kpp = 444, ksi .f
W= 0.101 K = 26.6 ksi
S v
. .~1
D= 2.0 ksi 8 = 5.28
o =1.0 § = -0.924
.~1 .~1
D1 = 16.0 ksi Kl = 0.693- ksi
D, = 0.0 ksi > = 80
9 . si K2 =
W, = -0.43 ksi T G.. = 267 ksi
F : EI
D_ = 3.65 ks® ~ G = 5.4 ksi
F s
Ro = 4.3 n==5a !
R, = 0.8 G, = 0.0 ksi™t i
1 . 1 . :
= 4 '_1 = -1 .
R2 4.0 ksi 02 3.0 ksi o
R3 = =3.5 G3 = 200
¥ = «0.7
It should be noted that,in gencral, the chojce of material
parameters cannot be made in completely arbitrary fashion.
For example,
A>C (22)
B >0 (23)
R >0 (24)

.
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so the parameters RO’ Rl’ R2, R3<, RI, and RS must be chosen
L so as to satisfy Eq. (24) for all possible states of the
¥
H material. Further, the loading condition im conjunction
" ' with the yizld condition F2 = C requries
‘ b 3F 3F
. —2 4e? = - =2 a0 (25)
b aeP ij +
‘ v
L and K > 0 and G > 0 must also be satisfied for all achiev-
' able stress states of the material.
I
e
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APPENDIX A

1t has been found while making fits for rocks of
low porosity, that the cap, fz = 0, may 2e chosen as
essentially vertical except near its intersection with
the yield surface El = 0. The bekavior of a cap model
with a virtical cap and a bulk modulus K (which may b+ a

constant or function of pressure) which is the same for

loading and unloading (see Fig. 5), i.e.,

K. =K (A-1)

K, <K (A-2)

That this is so can be readily seen by noticing that if an
associated flow rule is applied to a vertical cap only
plastic volume changes occur. The resulting hysteresis

in the stress~strain curves is also produced without the

cap if Eq. (A-2) is used.

It should be noted that use of an inequality like Eq.
(A-2) involving the shear modulus would violate the con-
tinuity requirements that load paths infinitesimally close
to a neutral loading path should result in essentially the

same stress-strain curves.
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v/rfz )

K =Ky

-Jl

FIG.5 CAP MODEL WITH SAME BULK MODULUS
ON LOADING AND UNLOADING

Vi
f; =0
/
K< Ky

-J,

FIG.6 IDEALLY PLASTIC MODEL (WITHOUT CAP)
WITH DIFFERENT BULK MODULI ON LOADING
AND UNLOADING

24

b s o N

s e

W vk itaen g s iy drge

ER




APPERDIX B

CAP MODEL BEHAVIOR If UNIAXIAL STRAIN

The general material model ccnsidz2red here can be described

in three dimensional Cartesian coordinates by the incremental

relations
de_. = det. + 4€P, (B-1)
3 1) 13
E 1 . 1 1 .
= - + - -= -
deij oK °ij dakk 3¢ [doij 3 °1jd°kk] (8-2)
F(G.. , €2.) <0 (B-3)
ij ij? -
. oF . _
ax 30 f F=0
ae? = 13 (B-4)
13
lo if F<O0
in which the summation convention has been adopted, & _ is
1]
the Kronecker d=1lta, and the de_. , de?, and deP, denote the
ij ij 1]
increments of total strain, elastic strain, and plastic
strain, respectively. The daij denote the stress increments,
and dX is a coefficient which is non-zero only when plastic
deformations occur. During plastic deformation Eqs. (B-3, 4)
become
F(o,. , €2.) = 0 (B~-5)
13 13
deP . = ax =2F (B-6)
ij a0, .
ij
The elastic and plastic strains can be eliminated from Egs.
(B-1, 2, 3, 4) by differentiating Eq. (B-S)
oF 3F
p) do, ., + —-- d€p=0 -

25
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and substituting Eq. (B-2, 6)

into Eqs. (B-1, 7) to obtain

1
_._. __. e ——
ij ( )o dckk 26 do, . + dA —
1]
oF oF oF
30, 9955 T 55 - 3ep = O
ij ij 1j
Multiplication of Eq. (B-8) by 6ij gives

oF

3G
rs

dokk = 3K(dekk - dx

and substitution of Eq. (B-10)

§_)

rs

into Eq. (B-8) leads to

J9F § )

90 rs
rs

(dekk dAr—

do., = 2Gde. ., + (K - ——05
ij ij
oF
= 26 ddz—
ij

Multiplication of Eq. (B~11l) b

the resulting relation from Eq.

which may be solved for dA

y 3§F and subtraction of
ij
(B-9) gives an equation

(ao YK - ——)6 s 9k *+ 26 de ]
di = rs 5 >
2G 9F - J9F J9F oF
x - 3)(86 6rs) + 26(30 ) - 90 P
rs rs rs o€
rs
This may be rewritten as
(ao s)[Kde Grs + 2G ders]
. K (2F )2+2c( OF _ L 9F 4 s 2 OF
rs
Bors 90 s 3 Bopq pq acrs 882
. . - 1 R . .
in which ders ders 3 dakkérs are the deviatoric strains.

The incremental stress strain
formation may be obtained by s

Eq. (B~11). The yield surface

relations during plastic de-

ubstituting Eq. (B-~13) into

F(o,. , E?.) = 0 in the models
i] 1]

26

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-1

J83§

o
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considered here are assumed to involve only thne invariants

J1 = %5 855 7 %k (B-14)

o1 o 1, 1 1 s

Jo = 3555545 20055 = 39185570955 — 3 918: ) (B-15)
P _ P _ P _

€, ers Grs €k (B-16)

in which the Sij are the deviatoric stresses. Therefore

F(I;N\/I, » e’y = 0 (B-17)
and

F ¥ aJl 1 3F “ F TH

= 8. . (B-1¢
aoij 3Jl ij \["é 31[_ 30 EJl ij 3\[— 27 /—

ac?
9F _ _oF v oF 5 (B-19)
oeP oeP  3eP oeP TS
rs v r v

Introducing Eqs. (B-18, 19) into Eqs. (B-11, 13) gives

S
do.. = K§, . (de - 3dX ___ + 2G(d B-20
54 13( kk ) (de, ij a\[— n) ( )
oF oF rs
3 Kdegp,y, + G — de
I3 kK oV, “\/3'2 rs
dx = 3 3 (B-21)
9K(823F) s o2, _3anF oF
1 'a\/_J2 1 aef;

For the case of uniaxial strain in the z-direction, the

following relations hold

m
]
m
u
™
n
™
[t}
™
[}
o

(B-22)

Q
1}
1]

Q

o (B-23)
XX vy T

Denoting the axial stress and strain by Oz and ez ,
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respectively, one can write

de = de
kk z
=2
dezz 3 dez
de = de = - i de
XX vy 3 z
de = de = de =0
Xy yz zXx
= +
Jl g 20’r
S22 3(02 - 0r)
Sex = Syy = - 3(0 - 0)
s = § = S =0
Xy yz zX
4
5, o= Ao - | = 2 s |
z T 2 z

Substitution of these equations into Eq. (B-20, 21) gives

2s
oF OF z
(3K = + G : ) de
oJl 3 J2 1/3 Iszl z
d\ =
2 2
9K(3§F) + G( 3F') aiF 9F
1 CRVEN 1 3ed
and
ds_ = 26(% de_ - ax 2E 5 )
z 3 z 3J z
2
= OF
dJl = 3K(dez 3dA aJl
Furthermore,
P JaF oF
de, = dA §,, = 3d\ —
v aoij ij BJl
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(B-24)
(B~25)
(B-~26)
(B~27)
(B-28)
(B-29)
(B-30)

(B-31)

(B-32)

(B-33)

(B-34)

(B-35)

(B~36)
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Equations (B-33, 34, 35, 36) may be integrated numerically
to obtain the stress-strain curve of the model in uniaxial
strain provided that Eq. (B-33) can be evaluated for dX .

This can always be done except when

oF 3

F__
9J, a\/—;;_

0

which can happen for the model of Section IV only for F = F2

if and only if

In this case one may employ an asymptotic approach in which
all quantities which vanish are expanded about the origin in

stress space

1 1 1 1
€ =€ ¢t , de = €_dt
z z z 2
A= Ae , dx = A dt
s = é t s ds = s dt
Z Z z
P _ :P P _ P
€, = €, € , del = €, dt

where t is a parameter which is to approach zero.
Then

aF . .
2(J1 - L)t

2
R“\/3 s,

1
[
~—

[}

Q>
4
[+34
Pl
- o
n
(%)
=]
N
[ 59
N -
{
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(B-37)

(3-38)

(B-39)

(B-40)

(B~41)

(3-42)

(B-43)

(B-44)

(B-45)
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Substi

M
<'c

tuting Eqe. (B-39 to 45) into Eqs. (B-33 to 36) gives

» - 2 . .
Y - 2
Gy -y +20f S0
: - 2 4 -2 F 1
36ki(J1 - L) + 3GiRi Sz —G(Jl - L) SE; ?

- 2 o _5g?
261(3 Tz ARi szt)

- 3Ki[ez - 6A (Jl - L)t]

61 t (I, - L)

in which Ki R Gi and Ri are the bulk modulus, shear modulus

and cap shape factor under conditions (B-38).

Consider Eq. (16) of Section IV,

2 - X = R[A - ceP¥y

By means of Eqs. (22, 24) it is clear that £>X , which
implies that £ > 0 . Therefore, by Eq. (16), L is

instantaneously equal to zero, even though £ is not zero.

For i =0
oF oF
X .
5 = ai dxp = -2(X - L)JL; = -2%¢ JL%
o€y, dey, dev dev
2 2
= —2e(3%) EP o _124¢? Jl(ﬂ-)
ae? v deP
v v
Then Eq. (B-46) becomes
(6K.J, + 26.R> 5) ¢
i _ i i i i "z z
t =
x 2,
36k.5.% + 36.rY 52 + 72 3,244 ¢
i i ii "z 1 deP
€
v
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(B~46)

(B-47)

(B-48)

(B-49)

(B-50)

(3-51)

(B-52)

e ]

P,

i ot i e e s e I SO .5
et e

i en gk




e e e et e o rm

Equation (B-61) is useful for fitting the model in the low
stress region where the seismic behavior of the material

mav be important.
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Let

g .
s=-2,35=-2,4=4%c,q=-% {(B-53)
éz éz aeP
Then Eqs. (B-47, 48, 52) become
l‘ci 2
S = = - 2Gi A Ri s (B-54)
J = 3K, - 18 K, A J (B-55) ‘
1 1
. 2
6KiJ + 2GiRis
A = (B-56)
36KiJ2 + 3ciR’i‘ s2 +72 32 p Q?

Equations (B-54, 55, 56) may be solved for s, J and A,

After some algebra one finds

+
38 _ _4_ |
. (c 3K |
A = 3 .__1___2_1. (B-57) !
(4 - R7E)
i
3Ki |
V= 1718 KA (B-58) ‘
s = £&J (B-59)

in which § = s/J is the slope of the stress path and

satisfies the aquation

TEE LAy fE L Lm?) V2l (B-60)
G, 3K, P i 4 74
i dsv
The initial modulus Mi for uniaxial strain is given by
. . 1 .
o] S 4+ =J
M:.—Z-=——z——-'——3—_1=s+lJ=(g+}-)J
1 £, €, 3 3
e+ 3 k6 -REE) (5 + DG - R2E) |
- 3 i i - 2 i (B-61) ,
2 i
4-R§g+3xi(%§—3%) (_Z}___Ri)g \
i i GJ. 3!(i
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Equation (B-61) is useful for fitting the model in the low

stress region where the seismic behavior of the material

may be important.
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